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Abstract—In this paper, we consider a cognitive radio system
with N secondary user (SU) pairs sharing spectrum with a pair
of primary users (PU). The SU power allocation problem is
formulated as a capacity maximisation problem under PU and SU
quality of service and SU peak power constraints. We show our
problem formulation is a geometric program and can be solved
with convex optimisation techniques. We examine the effect of
PU transmissions in our formulations. Solutions for both low-
and high- signal-to-interference-and-noise ratio (SINR) scenarios
are provided. We show that including the PU capacity in the
optimisation problem in some circumstances leads to increased
PU performance while not significantly degrading SU capacity.
In a practical wireless communications system, accurate channel
state information (CSI) is not often available hence we formulate
power allocation problems with both perfect and imperfect CSI
and analyse the performance loss incurred due to imperfect
CSI. Furthermore, we present a novel method of detecting and
removing infeasible SU quality of service constraints from the SU
power allocation problem that results in considerably improved
SU performance. Cumulative distribution functions of capacity
for various Rayleigh fading channels are presented.

I. INTRODUCTION

A large number of papers have appeared on various aspects
of cognitive radio (CR) systems, including fundamental in-
formation theoretic capacity limits (see, for example, [1–7]).
In an underlay CR system the secondary users (SUs) protect
the primary user (PU) by regulating their transmit power to
maintain the PU receiver interference below a well defined
threshold level. The limits on this received interference level at
the PU receiver can be imposed by an average/peak constraint
[2], or a minimum value for its signal-to-interference-and-
noise ratio (SINR) [4]. While imposing an additional channel
state information (CSI) requirement [5], the advantage of using
an SINR-based PU protection mechanism is that it removes
the constant interference threshold, thus benefiting the SUs
when the PU link has large SINR.

Power control in conventional wireless networks has been
extensively studied in the literature [8–10]. Power control in
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CR systems presents its own unique challenges. In spectrum
sharing applications, SU’s power must be allocated in a
manner that achieves the goals of the CR system while not
adversely affecting the operation of the PU. Generally the
goals of the CR are not compatible with the goals of the
PU; for instance, increasing SU’s power to increase SU’s
capacity will tend to increase interference to the PU. There
is a growing body of literature on power control and capacity
of CR systems. In [11], soft sensing information was used for
optimal power control to maximise capacity of one SU pair
coexisting with one PU pair. The impacts of SU’s transmission
power on the occurrence of spectrum opportunities and the
reliability of opportunity detection was analysed in [12]. In
[13], dynamic programming was used to develop a power
control strategy for one SU pair under a Markov model of
the PU’s spectrum usage. Optimal power allocation strategies
to achieve the ergodic capacity and the outage capacity of one
SU pair coexisting with one PU pair under different types of
power constraints and fading channel models were obtained
in [6]. Power control using game-theoretic approaches has
been proposed in [14, 15]. Power control for CR systems using
geometric programming has been proposed in [16–18]. In [17],
a CR relay system with one cognitive source, one relay and a
cognitive destination coexisting with a PU pair was considered
and an optimisation problem to minimise the total CR transmit
power under a peak interference constraint was formulated and
solved using geometric programming. A minimax approach
was used in [18] to minimise the maximum transmit power
for a CR system coexisting with a PU-Rx. The interference
caused by a PU-Tx to the SU-Rxs was not considered in the
problem formulation of [18]. In [16], a distributed approach
was used for power allocation to maximise SU sum capacity
under a peak interference constraint, but the approach did not
include the interference caused by the PU-Tx and the problem
was only analysed for a high SINR scenario.

Convex optimisation methods are widely used in the design
and analysis of communications systems. Many problems that
arise in communications signal processing can be cast or
converted into convex optimisation problems which allow an-
alytical or numerical solutions to be calculated easily [19]. In
[20], several problems for designing optimal dynamic resource
allocation in CR systems are formulated and the key role that
convex optimisation plays in finding the optimal solutions is
demonstrated.

The problem posed in this paper has been presented in
previous works [21] including feasibility detection [22]. This
paper improves on the previous results by presenting a solution
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which is robust to channel uncertainties.
The contributions of this paper are as follows.
• We formulate the SU’s power allocation problem as a

capacity maximisation problem under PU and SU quality
of service (QoS) and SU peak power constraints. We
show that it can be solved using geometric programming
and convex optimisation techniques.

• Unlike in [16–18, 20], where the PU’s interference at
each SU-Rx is neglected, we evaluate the effect of
the PU’s interference by explicitly including it in our
formulations. We present solutions for both low and high
SINR scenarios.

• Most of the cognitive radio literature adopts a SU centric
view and, apart from guaranteeing minimum QoS to
PU, does not consider the PU-SU system as a whole.
We show that considering the system capacity in the
optimisation problem, in some circumstances, results in
improved PU’s performance without a significant penalty
in SU’s capacity. Optimisation strategies for different
channel conditions are presented.

• We formulate a robust SU power allocation problem
under channel uncertainties by considering a PU outage
probability constraint. Through numerical simulations we
show that significant losses in SU’s performance can be
expected when perfect CSI is not available.

• We present a novel method of detecting and removing
infeasible SU’s QoS constraints from the SU power
allocation problem that results in considerably improved
SU’s performance.

The performance resulting from the optimisation problems
outlined above is demonstrated by means of capacity cu-
mulative distribution functions (CDFs) for various channel
conditions. Although we only consider flat Rayleigh channels,
the framework developed in this paper can be readily extended
to other channel models such as Ricean or Nakagami.

The rest of this paper is organised as follows. In Section II,
the system model is introduced. Optimum SU power allocation
when full CSI is available is discussed in Section III and
solutions for both high and low SINR scenarios presented.
In Section IV, we present a novel method of detecting and
removing infeasible SU’s QoS constraints from the SU power
allocation problem that results in considerably improved SU’s
performance. Robust SU power allocation under channel un-
certainties is discussed in Section V and in Section VI, we
extend feasibility detection to the robust SU power allocation
problem. Simulation results are presented in Section VII and
conclusions in Section VIII.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a cognitive radio system
with a single PU and N SU transmitters communicating
simultaneously over a common channel to their respective
receivers. Independent, point-to-point, flat Rayleigh fading
channels are assumed for all links in the network. Let gp =

|hp|2, g(ij)
ss = |h(ij)

ss |2, g(i)
ps = |h(i)

ps |2 and g(j)
sp = |h(j)

sp |2 denote
the instantaneous channel powers of the PU-Tx to PU-Rx,
SU-Tx j to SU-Rx i, PU-Tx to SU-Rx i and SU-Tx j to
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Fig. 1. System Model

PU-Rx links, respectively. For notational convenience we will
denote g(i)

s = g
(ii)
ss . Furthermore, we assume that the channel

powers for the PU and each of the N SUs are independent
and identically distributed (iid) and are governed by their
corresponding parameters E(gp) = Ωp, E(g

(i)
s ) = Ωs ∀i,

E(g
(ij)
ss ) = Ωss ∀i 6= j, E(g

(i)
ps ) = Ωps ∀i and E(g

(j)
sp ) = Ωsp

∀j. E(·) denotes the expectation operator.
In our model the SINR at the ith SU receiver is given by

γ(i)
s =

P
(i)
s g

(i)
s

N∑
j=1,j 6=i

P
(j)
s g

(ij)
ss + Ppg

(i)
ps + σ2

s

(1)

and that at the PU receiver by

γp =
Ppgp

N∑
j=1

P
(j)
s g

(j)
sp + σ2

p

, (2)

where P (j)
s and Pp are the jth SU and PU transmit powers,

respectively, and σ2
s and σ2

p are the additive white Gaussian
noise (AWGN) variance at the ith SU-Rx and PU-Rx, respec-
tively. We also note that that there is a maximum transmit
power constraint, P (j)

s,max, on the SU transmitters which may
be due either to regulatory or hardware limitations. This is
denoted by

P (j)
s ≤ P (j)

s,max.

Additionally, the vector Ps is used to collectively refer to the
set of SU transmit powers, i.e., Ps , [P

(1)
s . . . P

(N)
s ]T .

In a cognitive radio system the secondary users are allowed
to operate as long as they can guarantee a certain level of
quality of service (QoS) to the primary user. Hence, in our
analysis we impose an SINR constraint, γT , at the PU receiver

γp ≥ γT.

The PU’s capacity is given by

Cp = log2(1 + γp), (3)

while the SU’s sum capacity is denoted by

CΣ =

N∑
i=1

Ci, (4)
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where the individual capacity of the ith SU is given by

Ci = log2

(
1 + γ(i)

s

)
. (5)

Using (3) and (4), the system capacity can then be expressed
as

Csys = Cp + CΣ. (6)

CΣ and Csys are the performance metrics optimised in Sec-
tions III-VI of this paper.

The main system variables can be parameterised as follows.
We denote by c1 =

Ωsp

Ωs
the ratio of interference to desired

channel power. Similarly,

c2 =
γT

PpΩp/σ2
p

(7)

represents the ratio of the minimum target SINR to the mean
signal-to-noise ratio (SNR) at the PU-Rx. Hence, increasing
c2 corresponds to reducing the allowable interference, with the
case of c2 = 1 corresponding to zero average allowable in-
terference. Finally, c3 = Ωss

Ωs
parametrises the relative channel

power of desired to interfering SU links.

III. SU POWER OPTIMISATION

In this section, we aim to find the SU’s power allocation
such that the SU’s sum capacity, CΣ, or the system capacity,
Csys, is maximised while maintaining the PU receiver QoS
above the threshold γT, and keeping within the SU’s transmit
power budget. We may additionally choose to set minimum
SINR thresholds, γ(i)

s,min on the ith SU receiver. This rep-
resents a practical limitation on SU receivers below which
the receivers fail to operate with acceptable performance. We
assume that the power allocation problem is solved by a central
SU controller and a control channel for the exchange of all
necessary information needed for solving the problem exists.
Furthermore, we assume that we are unable to control the
PU’s transmit power and the PU transmits at a constant power
of Pp. In this section, we formulate the SU power allocation
problem under the assumption that perfect CSI for all links
are available which allows us to obtain fundamental limits on
capacity. However, in practice the channel gains would need
to be estimated, hence the capacities obtained in this section
provide an upper bound. In Section V, we consider the case
when perfect CSI is not available and there is a non-zero
probability of PU outage which we constrain. Mathematically
we solve the following suite of optimisation problems.

1) SU Capacity Maximisation:

maximise
Ps

CΣ (8a)

s.t. γp ≥ γT (8b)

P (j)
s ≤ P (j)

s,max, j = 1, . . . , N (8c)

(and o.s.t.) γ(i)
s ≥ γ

(i)
s,min, i = 1, . . . , N (8d)

where s.t. and o.s.t. stand for “subject to” and
“optionally subject to”, respectively. The only
difference between problems (8a)–(8c) and (8a)–(8d) is
that (8a)–(8d) includes SU QoS constraints, whereas
(8a)–(8c) does not.

2) System Capacity Maximisation:

maximise
Ps

Csys (9a)

s.t. (8b) and (8c) (9b)
(and o.s.t.) (8d) (9c)

From (4) and (5) it is obvious that maximising the objective
in (8) is equivalent to maximising

∏N
i=1 (1 + γ

(i)
s ). Similarly,

for (9) we seek to maximise (1 + γp) ·
∏N
i=1 (1 + γ

(i)
s ).

Problems (8) and (9) can be modified to minimisation prob-
lems by taking the reciprocal of the objectives. The suite
of optimisation problems are nonlinear and non-convex and
generally hard to solve [19]. We proceed by dividing our
problem into high and low SINR scenarios.

A. High SINR Scenario

When the SINR at every receiver is high, Cp, CΣ and Csys

given in (3)–(6) can be approximated by

Cp ≈ log2(γp)

CΣ ≈ log2

(
N∏
i=1

γ(i)
s

)
(10)

Csys ≈ log2

(
γp ·

N∏
i=1

γ(i)
s

)
.

These approximations are valid when γp and γ
(i)
s are much

larger than 0 dB, e.g., 10 dB or more. Using the approxima-
tions in (10), the optimisation problems (8) and (9) can be
written in minimisation form as

1) High SINR SU Capacity Maximisation :

minimise
Ps

N∏
i=1

(
1

γ
(i)
s

)
s.t. (8b), (8c) and optionally (8d) (11)

2) High SINR System Capacity Maximisation :

minimise
Ps

(
1

γp

)
·
N∏
i=1

(
1

γ
(i)
s

)
s.t. (8b), (8c) and optionally (8d) (12)

Problems (11) and (12) fall into a class of nonlinear, non-
convex optimisation problems known as geometric programs
(GP) (see [19, 23] for a complete reference on the subject). GP
can, however, be transformed to convex optimisation problems
and solved efficiently in polynomial time by interior point
methods [24].

Through straightforward manipulation of the second and
third constraints, problems (11) and (12) can be transformed
into a standard form GP [19]. Once in this form, they can
be solved to obtain the optimum SU power allocation. The
resulting performance is evaluated in Section VII.
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B. Low SINR Scenario

In the low SINR scenario the approximation (10) is no
longer valid and so our capacity maximisation optimisation
problems are given by

1) Low SINR SU Capacity Maximisation :

minimise
Ps

N∏
i=1

(
1

1 + γ
(i)
s

)
s.t. (8b), (8c) and optionally (8d) (13)

2) Low SINR System Capacity Maximisation :

minimise
Ps

(
1

1 + γp

)
·
N∏
i=1

(
1

1 + γ
(i)
s

)
s.t. (8b), (8c) and optionally (8d) (14)

The objectives in problems (13) and (14) are ratios of posyn-
omials and hence they are not themselves posynomials. Opti-
misation problems of this nature are not GP and are known as
Complementary GP [23]. Complementary GPs are non-convex
problems but can be solved with an iterative technique known
as the single condensation method [23]. In each iteration,
the feasible point computed in the previous iteration is used
to approximate the denominator of the objective monomial.
Since a ratio of posynomial and monomial is a posynomial
[19], the resulting problem is a GP. The procedure is repeated
until the solution converges on an optimum of the original
Complementary GP. It should be noted that convergence to
a local or global minimum is possible, however, extensive
numerical experiments (Section VII) have found empirically
that the solution always converges to the global minimum.
The posynomial is approximated with a monomial using the
geometric-arithmetic mean inequality [23]∑

k

δkvk ≥
∏
k

vδkk , (15)

where vk ≥ 0, δk ≥ 0 and
∑
k δk = 1. If we let uk = δkvk,

then (15) can be written as∑
k

uk ≥
∏
k

(
uk
δk

)δk
. (16)

Note that equality in (16) holds when δk = uk/
∑
k uk. The

term on the left hand side of (16) resembles the denominator
of our objective, i.e. a sum of monomials. Hence, if we
let uk(Ps) be the monomial terms of the denominator and
δk = uk(Ps)/

∑
k uk(Ps), then from (16) it is clear that the

denominator can be approximated around a feasible Ps with
a product of monomials. Since the approximation is always
an under-estimator of the original posynomial, minimising
the condensed objective guarantees that the solution moves
towards a minimum of the original objective function. An
adaptation of a commonly used algorithm [10, 23] for solving
the low SINR capacity maximisation problem is presented
below.

The single condensation method presented above is a gen-
eral method of solving the power allocation problem and can
also be used to solve the high SINR scenario without using the

Algorithm 1 Single Condensation Method

1. Generate a random feasible vector P̃s.
2. Compute the individual monomial terms, uk(P̃s), and the

denominator,
∑
k uk(P̃s), of the objective function using

P̃s.
3. Using results from step 2, compute δk with δk =
uk(P̃s)/

∑
k uk(P̃s).

4. Using δk, form the condensed denominator,∏
k (uk(Ps)/δk)

δk . Note Ps is the optimisation variable.
5. Solve the resulting GP and assign solution to P̃ls, where
l is the loop iteration.

6. Exit loop if ‖P̃ls − P̃l−1
s ‖ ≤ ε, where ε is the error

tolerance.
7. GOTO step 2 with Pls computed in step 5.

approximation (10) or mixed scenario cases in which some of
the receivers in the system have high SINR and others have
low SINR.

IV. SU POWER OPTIMISATION WITH FEASIBILITY
DETECTION

Optimisation problems (8a)–(8d) and (9a)–(9c) are infeasi-
ble if any one of the SU QoS constraints is infeasible. This
has an adverse effect on capacity since no SUs are able to
access the channel if the QoS constraint cannot be met for
any one (or more) SU. Thus, one SU which violates the QoS
constraint renders the entire optimisation infeasible. Capacity
can be improved by selecting the optimum subset of SU’s that
do not violate the QoS constraints and maximise capacity.
However, this selection process is a NP-hard combinatorial
optimisation problem which is extremely difficult to solve. A
suboptimal method that improves capacity is to exclude the
violating SUs from transmission. In this section we formulate
a method of detecting and removing the violating SUs from the
optimisation problem. The issue of fairness among SUs and
the tradeoff between fairness and capacity is beyond the scope
of this paper. Our method is based on a feasibility detection
technique, known as sum of infeasibilities, that is commonly
used in interior point methods to find a strictly feasible starting
point [19]. We form the problem

minimise
Ps,s

1Ts

s.t.
γT

γp
≤ s0 (17)

γ
(i)
s,min

γ
(i)
s

≤ si, i = 1, . . . , N

P (j)
s ≤ P (j)

s,max, j = 1, . . . , N

s � 1,

where 1 is a vector of length N + 1 with all entries equal
to one, s ∈ RN+1

++ and � is the elementwise greater than or
equal to comparison operator. For fixed Ps, the optimal values
of s0 and si are max(γT/γp, 1) and max(γ

(i)
s,min/γ

(i)
s , 1)

respectively, so in problem (17), we are minimising the sum
of the infeasibilities. The optimum value of (17) is N + 1 and
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achieved if and only if the constraints (8b), (8c) and (8d) are
feasible. It follows that all feasible SU QoS constraints will
have the corresponding element in the vector s equal to one.

Let I represent the set of feasible SU QoS constraints
determined from the solution of problem (17). We then solve
the following SU power optimisation problems in which the
violating SUs are removed

1) SU Capacity Maximisation with Feasible SU QoS Con-
straints:

maximise
Ps

CΣ (18a)

s.t. γp ≥ γT (18b)

γ(i)
s ≥ γ

(i)
s,min, i ∈ I (18c)

P (j)
s ≤ P (j)

s,max, j ∈ I (18d)

2) System Capacity Maximisation with Feasible SU QoS
Constraints:

maximise
Ps

Csys

s.t. (18b), (18c) and (18d) (19)

Problems (18) and (19) can be solved using methods pre-
sented in Section III for the low and high SINR scenarios.

V. SU POWER OPTIMISATION UNDER CHANNEL
UNCERTAINTIES

So far we have assumed that perfect CSI of all links are
available. However, in practise this assumption may not be
valid. For our analysis, we assume that the channel between
the SU-Txs and SU-Rxs are accurately known through the
SU’s channel estimation procedure and those between the PU
transmitter and SU receivers can be accurately measured, for
example through knowledge of the PU’s pilot symbols. As
stated in Section II, the PU-Tx to PU-Rx and the jth SU-Tx
to PU-Rx channel gains are iid and for the analysis of this
section, we assume that only the mean channel gains, Ωp and
Ωsp, of these links are known, i.e., the instantaneous values
of gp and g(j)

sp are not known. In this section we consider the
SU power optimisation problem under these uncertainties.

In our formulation we consider the PU’s outage probability
as a QoS parameter. In the system under consideration, outage
occurs when the PU’s SINR, γp, falls below the PU’s SINR
threshold, γT. The outage probability is expressed as

Po = Prob (γp ≤ γT)

= Prob

Ppgp ≤ γT

 N∑
j=1

P (j)
s g(j)

sp + σ2
p

 .

In a Rayleigh fading environment, gp and g
(j)
sp are exponen-

tially distributed random variables with means Ωp and Ωsp

respectively. Under these conditions, the outage probability
is commonly known to have the following form (see, for
example, [25])

Po = 1− e−c2
N∏
j=1

 1

1 +
γTP

(j)
s Ωsp

PpΩp

, (20)

where c2 is given by (7).
To formulate the SU power optimisation problem under

channel uncertainty, we replace the PU’s SINR threshold in
problems (8) and (9) by the outage probability constraint.
Furthermore, since instantaneous CSI for PU-Tx to PU-Rx and
SU-Txs to PU-Rx links are not available, in the optimisation
problem that seeks to maximise the system capacity—(9)—
the PU’s SINR is calculated using the expected values of
these links i.e., gp and g

(j)
sp in (2) are replaced with Ωp and

Ωsp respectively. Hence, given a maximum allowable outage
probability, Po,max, the optimisation problems are expressed
as:

1) SU Capacity Maximisation Under Channel
Uncertainty:

maximise
Ps

CΣ (21a)

s.t.
N∏
j=1

(
1 +

γTP
(j)
s Ωsp

PpΩp

)

≤ e−c2

1− Po,max
(21b)

(8c) (21c)
(and o.s.t.) (8d) (21d)

2) System Capacity Maximisation Under Channel
Uncertainty:

maximise
Ps

Csys (22a)

s.t. (8c) and (21b) (22b)
(and o.s.t.) (8d) (22c)

We have only shown the general formulations here. However,
using the approximations in Section III-A, capacity maximi-
sation problems for high SINR scenario can be constructed.
Problems (21) and (22) can be solved using techniques de-
scribed in Sections III-A and III-B.

VI. SU POWER OPTIMISATION WITH FEASIBILITY
DETECTION UNDER CHANNEL UNCERTAINTIES

The feasibility detection technique formulated in Section
IV can be incorporated into the formulations developed in
Section V to improve the SU’s performance when SU’s QoS
constraints are imposed. We form the problem

minimise
Ps,s

1Ts

s.t.
(

1− Po,max

e−c2

)
(23)

·
N∏
j=1

(
1 +

γTP
(j)
s Ωsp

PpΩp

)
≤ s0

γ
(i)
s,min

γ
(i)
s

≤ si, i = 1, . . . , N

P (j)
s ≤ P (j)

s,max, j = 1, . . . , N

s � 1,
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Fig. 2. CΣ CDF with perfect CSI for Scenario A, γT = 5 dB. The same
legend is used in Figs. 3–7.

the solution of which gives us the set I, the set of feasible SU
QoS constraints. As in Section IV, we then solve the following
problems in which the violating SUs are removed

1) SU Capacity Maximisation Under Channel Uncertainty
with Feasible SU QoS Constraints:

maximise
Ps

CΣ (24a)

s.t. (21b) (24b)

γ(i)
s ≥ γ

(i)
s,min, i ∈ I (24c)

P (j)
s ≤ P (j)

s,max, j ∈ I (24d)

2) System Capacity Maximisation Under Channel Uncer-
tainty with Feasible SU QoS Constraints:

maximise
Ps

Csys

s.t. (21b), (24c) and (24d) (25)

Problems (24) and (25) can be solved using the methods
presented in Section III for the low and high SINR scenarios.

VII. SIMULATION RESULTS AND DISCUSSION

We now present the results of simulations that require
solution of the optimisation problems formulated in this paper,
specifically evaluating the CDFs of the resulting capacities. We
consider a system with N = 3 SUs. In all simulations we have
set Pp = 0 dBw, P (i)

s,max = 0 dBw, σ2
p = σ2

s = −37 dBw and
Ωp = Ωs = 5 dB. This choice of parameter values allows
us to contrast the optimisation problems formulated in this
paper in the channel scenarios given below. Simulations for
optimisation problems that impose SU QoS requirements have
γ

(i)
s,min = −10 dB, i = 1, . . . , N . In SU power optimisation

problems under channel uncertainties we have set the outage
probability, Po,max, to 5%. We consider the following three
channel scenarios

1) Scenario A: High Interference
In this scenario c1 = c3 = 0.9 which corresponds to
each receiver being approximately the same distance
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Fig. 3. CP CDF with perfect CSI for Scenario A, γT = 5 dB.
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Fig. 5. CP CDF with perfect CSI for Scenario B, γT = 5 dB.



7

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

capacity (bits/s/Hz)

P
(C

Σ
 ≤

 a
b
sc

is
sa

)

Fig. 6. CΣ CDF with perfect CSI for Scenario C, γT = 5 dB.
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Fig. 7. CP CDF with perfect CSI for Scenario C, γT = 5 dB.
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Fig. 8. CΣ CDF (SU QoS imposed) comparison of high SINR approximation
and condensation method for Scenario C, γT = 5 dB.
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Fig. 9. CΣ CDF comparison of proposed method and ad hoc methods for
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Fig. 13. Mean CΣ when SU QoS are imposed as a function of γT with
perfect CSI.

from all transmitters. This results in high interference
among all users, thus making the PU’s QoS constraint
difficult to satisfy. The SINR is expected to be low,
hence we use the low SINR method of Section III-B
to obtain the solution.

2) Scenario B: Low PU and High SU Interference
In this scenario c1 = 0.1 and c3 = 0.9. Here, the PU
experiences low interference from the SUs since it is
approximately 3 times (assuming 1/d2 path loss) further
away from SU-Txs than the PU-Tx. As a result, the
PU’s QoS constraint is easily satisfied. However, SU to
SU interference is very prominent. In this scenario, the
SINR at the SUs will be low and therefore we obtain the
solution using the low SINR method of Section III-B.

3) Scenario C: Low Interference
In this scenario c1 = c3 = 0.1 which corresponds to
each receiver being approximately 3 times further away
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Fig. 14. Mean CΣ as a function of γT with perfect CSI and feasibility
detection.
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Fig. 15. Mean CΣ when SU QoS are imposed as a function of γT under
channel uncertainties, Po,max = 5%.

from the interfering transmitters than its own transmitter.
This results in low interference between all users, thus
making the PU’s QoS constraint easy to satisfy. Since the
SINR at all receivers is expected to be high, this scenario
is solved using the high SINR method of Section III-A.

When solving using the low SINR (single condensation)
method, each instantiation of the problem is solved multiple
times using different random but feasible staring points, P̃s,
and solutions checked to confirm convergence to the same
point. If different solutions are obtained then this indicates
convergence to local minima, but in our extensive numerical
experiments we have never observed this behaviour.

For our discussion, we define SU blocking probability as
the probability that CΣ = 0, i.e, no SUs are able to access the
channel.

Results of our proposed methods are compared against the
equal power allocation method and a power profile method
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Fig. 16. Mean CΣ as a function of γT under channel uncertainties and
feasibility detection, Po,max = 5%

analogous to the “poor man’s waterfilling” method [26] where
we allocate power proportionally to g

(i)
s /g

(i)
sp . We refer to

these methods as ad hoc allocation methods. Note that the ad
hoc allocation methods do not impose a minimum SU QoS
requirement, hence a fair comparison is only possible against
problems (8a)–(8c) and (9a–9b).

We also compare our proposed feasibility detection method
against the brute force method of selecting the optimum
set of SU transmitters. The brute force method performs an
exhaustive search and finds the set of SUs that achieve the
highest capacity.

Figs. 2–7 show CΣ and Cp capacity CDFs for the three
channel conditions with γT = 5 dB when perfect CSI is
available. The legends of Figs. 2 and 3 are applicable for all
6 of these figures. From Figs. 2, 4 and 6, we observe that
in all three scenarios, problem (8a)–(8c) performs the best in
terms of SU performance. All optimisation problems result
in non-zero SU blocking probability due to either PU’s QoS
constraints or both PU’s and SU’s QoS constraints. It is evident
that feasibility detection results in a significant improvement
in SU’s performance in all channel scenarios, for instance, in
Scenario A the SU blocking probability (Fig. 2) is reduced
from 80% to approximately 42%. Figs. 3, 5 and 7 show the
PU’s capacity CDF for the three scenarios along with the
CDF for the reference case when no SUs are transmitting. The
discontinuity in the graphs correspond to the point at which the
optimisation problems become feasible and SU transmissions
start. The effect of the SU’s transmissions on the PU’s capacity
is clearly visible.

By noting the effects of including the PU’s capacity in the
optimisation problems we are able to contrast two optimisation
strategies using problems (8a)–(8c) and (9a)–(9b). In Scenario
A, we observe that the two optimisation problems result in
similar median SU sum capacities, however, problem (9a)–
(9b) results in a much improved median PU’s capacity. Hence,
when the PU experiences high interference, problem (9a)–(9b)
is the better option as it results in improved PU’s performance

while not adversely affecting the SU’s performance. On the
other hand, in Scenarios B and C, where there is low in-
terference to the PU, using problem (9a)–(9b) improves the
PU’s performance but adversely affects the SU’s performance.
Therefore, from the SU’s point of view, problem (8a)–(8c) is
the preferred option.

As stated previously, Scenario C is solved using the high
SINR approximation method. It is also possible to solve it
using the more general condensation method. In Fig. 8 we
compare the solution of problem (8a)–(8d) obtained using the
two methods. From the results, it is evident that the high SINR
approximation provides a fairly accurate approximation of the
problem.

In Fig. 9 we compare the results of our proposed optimisa-
tion problems (8a)–(8c) and (9a–9b) against the ad hoc power
allocation methods of [26]. We see that the ad hoc allocation
methods are outperformed by the methods proposed in this
paper. We have only shown results for Scenario A since similar
results are obtained for Scenarios B and C.

In Fig. 10 we compare the results of our feasibility de-
tection for Scenario A against the brute force method of
selecting the optimum set of SUs. As expected, the brute
force method outperforms the proposed method, however,
the performance improvement comes at a price of greatly
increased computational complexity. Although suboptimal, the
proposed feasibility detection method is an efficient method of
improving the SU performance.

Figs. 11 and 12 show CΣ and Cp capacity CDFs for
Scenario B with γT = 5 dB when channel uncertainties exist.
The legend of Fig. 11 is applicable to Fig. 12. Due to space
constraints we only show results for Scenario B. Scenario C
results are similar to Scenario B. Results for Scenario A are
not shown because, due to unfavourable channel conditions,
the PU’s outage probability constraint is never satisfied and
no SUs are able to access the channel, i.e, there is a 100%
SU blocking probability for all optimisation problems. From
Fig. 11, it is clear that there is a significant loss in the SU’s
performance compared to when perfect CSI is available, for
instance, the median CΣ obtained using problem (21a)–(21c)
is less than half of that obtained using problem (8a)–(8c).
Feasibility detection is again seen to reduce the SU blocking
probability. Fig. 12 shows the distribution of γp under channel
uncertainties. The inset shows the section between 0 dB–10 dB
in greater detail and confirms that all optimisation problems
attain an outage probability (probability PU’s SINR is below
5 dB) of 5% or less. From the SU’s point of view, when
channel uncertainties exist, problems (24) and (21a)–(21c) are
the preferred options depending on whether the SU’s QoS
constraints are required or not.

Figs. 13–16 plot the mean CΣ as a function of γT for
problems that impose SU’s QoS constraints. From Figs. 13
and 14 it can be seen that feasibility detection significantly
improves the SU’s performance in all three scenarios when
accurate CSI is available. Fig. 16 shows that when perfect
CSI is not available, feasibility detection results in significant
improvement of the SU’s performance for Scenarios B and C
while minor gains for lower values of γT are seen for Scenario
A. Figs. 15 and 16 highlight the fact that unavailability of
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accurate CSI adversely affects the SU’s performance, where
practically no SU communications are possible in a high
interference scenario. This can be improved if the PU relaxes
its QoS requirements, either through a reduction of γT or an
increase of Po,max or a combination of both. As expected,
accurate knowledge of PU-Tx to PU-Rx and SU-Txs to PU-
Rx links are crucial to the SU’s performance and large SU’s
performance losses are expected if accurate CSI of these links
are not available.

VIII. CONCLUSIONS

In this paper, we have formulated the SU power alloca-
tion problem in a CR system as a geometric program and
obtained capacity CDFs in various channel conditions. We
have included the effect of the PU’s transmission in our
formulations and studied the problem in both high and low
SINR scenarios. It has been demonstrated that considering
the system capacity in the optimisation problem, in some
circumstances, results in improved PU performance without a
significant penalty in the SU’s capacity. Optimisation strategies
for different channel conditions have been presented. Further-
more, we have presented a novel method of detecting and
removing infeasible SU’s QoS constraints from the SU power
allocation problem that results in considerably improved SU’s
performance. A robust SU power allocation problem under
channel uncertainties by considering a PU outage probability
constraint has been presented. The results quantify the intuitive
importance of PU-Tx to PU-Rx and SU-Txs to PU-Rx CSI and
large SU performance losses are expected if accurate CSI of
these links are not available.
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